3.3.12 \(\int \frac {\sqrt {\sec (c+d x)} (A+B \sec (c+d x))}{(a+a \sec (c+d x))^2} \, dx\) [212]

3.3.12.1 Optimal result
3.3.12.2 Mathematica [C] (verified)
3.3.12.3 Rubi [A] (verified)
3.3.12.4 Maple [A] (verified)
3.3.12.5 Fricas [C] (verification not implemented)
3.3.12.6 Sympy [F]
3.3.12.7 Maxima [F]
3.3.12.8 Giac [F]
3.3.12.9 Mupad [F(-1)]

3.3.12.1 Optimal result

Integrand size = 33, antiderivative size = 168 \[ \int \frac {\sqrt {\sec (c+d x)} (A+B \sec (c+d x))}{(a+a \sec (c+d x))^2} \, dx=-\frac {A \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{a^2 d}+\frac {(2 A+B) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{3 a^2 d}+\frac {(2 A+B) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 a^2 d (1+\sec (c+d x))}+\frac {(A-B) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 d (a+a \sec (c+d x))^2} \]

output
1/3*(2*A+B)*sin(d*x+c)*sec(d*x+c)^(1/2)/a^2/d/(1+sec(d*x+c))+1/3*(A-B)*sin 
(d*x+c)*sec(d*x+c)^(1/2)/d/(a+a*sec(d*x+c))^2-A*(cos(1/2*d*x+1/2*c)^2)^(1/ 
2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/ 
2)*sec(d*x+c)^(1/2)/a^2/d+1/3*(2*A+B)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2 
*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x 
+c)^(1/2)/a^2/d
 
3.3.12.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 3.79 (sec) , antiderivative size = 256, normalized size of antiderivative = 1.52 \[ \int \frac {\sqrt {\sec (c+d x)} (A+B \sec (c+d x))}{(a+a \sec (c+d x))^2} \, dx=\frac {e^{-i d x} \cos \left (\frac {1}{2} (c+d x)\right ) \sec ^{\frac {5}{2}}(c+d x) \left (8 (2 A+B) \cos ^3\left (\frac {1}{2} (c+d x)\right ) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \left (\cos \left (\frac {1}{2} (c+d x)\right )-i \sin \left (\frac {1}{2} (c+d x)\right )\right )+i \left (A e^{-i (c+d x)} \left (1+e^{i (c+d x)}\right )^3 \sqrt {1+e^{2 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},-e^{2 i (c+d x)}\right )-2 \cos (c+d x) (5 A+B+(7 A-B) \cos (c+d x)-i (A-B) \sin (c+d x))\right )\right ) \left (\cos \left (\frac {1}{2} (c+3 d x)\right )+i \sin \left (\frac {1}{2} (c+3 d x)\right )\right )}{6 a^2 d (1+\sec (c+d x))^2} \]

input
Integrate[(Sqrt[Sec[c + d*x]]*(A + B*Sec[c + d*x]))/(a + a*Sec[c + d*x])^2 
,x]
 
output
(Cos[(c + d*x)/2]*Sec[c + d*x]^(5/2)*(8*(2*A + B)*Cos[(c + d*x)/2]^3*Sqrt[ 
Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*(Cos[(c + d*x)/2] - I*Sin[(c + d*x 
)/2]) + I*((A*(1 + E^(I*(c + d*x)))^3*Sqrt[1 + E^((2*I)*(c + d*x))]*Hyperg 
eometric2F1[1/2, 3/4, 7/4, -E^((2*I)*(c + d*x))])/E^(I*(c + d*x)) - 2*Cos[ 
c + d*x]*(5*A + B + (7*A - B)*Cos[c + d*x] - I*(A - B)*Sin[c + d*x])))*(Co 
s[(c + 3*d*x)/2] + I*Sin[(c + 3*d*x)/2]))/(6*a^2*d*E^(I*d*x)*(1 + Sec[c + 
d*x])^2)
 
3.3.12.3 Rubi [A] (verified)

Time = 0.98 (sec) , antiderivative size = 174, normalized size of antiderivative = 1.04, number of steps used = 12, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.364, Rules used = {3042, 4507, 27, 3042, 4508, 3042, 4274, 3042, 4258, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {\sec (c+d x)} (A+B \sec (c+d x))}{(a \sec (c+d x)+a)^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \left (A+B \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^2}dx\)

\(\Big \downarrow \) 4507

\(\displaystyle \frac {\int -\frac {a (A-B)-3 a (A+B) \sec (c+d x)}{2 \sqrt {\sec (c+d x)} (\sec (c+d x) a+a)}dx}{3 a^2}+\frac {(A-B) \sin (c+d x) \sqrt {\sec (c+d x)}}{3 d (a \sec (c+d x)+a)^2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {(A-B) \sin (c+d x) \sqrt {\sec (c+d x)}}{3 d (a \sec (c+d x)+a)^2}-\frac {\int \frac {a (A-B)-3 a (A+B) \sec (c+d x)}{\sqrt {\sec (c+d x)} (\sec (c+d x) a+a)}dx}{6 a^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {(A-B) \sin (c+d x) \sqrt {\sec (c+d x)}}{3 d (a \sec (c+d x)+a)^2}-\frac {\int \frac {a (A-B)-3 a (A+B) \csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )}dx}{6 a^2}\)

\(\Big \downarrow \) 4508

\(\displaystyle \frac {(A-B) \sin (c+d x) \sqrt {\sec (c+d x)}}{3 d (a \sec (c+d x)+a)^2}-\frac {\frac {\int \frac {3 a^2 A-a^2 (2 A+B) \sec (c+d x)}{\sqrt {\sec (c+d x)}}dx}{a^2}-\frac {2 (2 A+B) \sin (c+d x) \sqrt {\sec (c+d x)}}{d (\sec (c+d x)+1)}}{6 a^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {(A-B) \sin (c+d x) \sqrt {\sec (c+d x)}}{3 d (a \sec (c+d x)+a)^2}-\frac {\frac {\int \frac {3 a^2 A-a^2 (2 A+B) \csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{a^2}-\frac {2 (2 A+B) \sin (c+d x) \sqrt {\sec (c+d x)}}{d (\sec (c+d x)+1)}}{6 a^2}\)

\(\Big \downarrow \) 4274

\(\displaystyle \frac {(A-B) \sin (c+d x) \sqrt {\sec (c+d x)}}{3 d (a \sec (c+d x)+a)^2}-\frac {\frac {3 a^2 A \int \frac {1}{\sqrt {\sec (c+d x)}}dx-a^2 (2 A+B) \int \sqrt {\sec (c+d x)}dx}{a^2}-\frac {2 (2 A+B) \sin (c+d x) \sqrt {\sec (c+d x)}}{d (\sec (c+d x)+1)}}{6 a^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {(A-B) \sin (c+d x) \sqrt {\sec (c+d x)}}{3 d (a \sec (c+d x)+a)^2}-\frac {\frac {3 a^2 A \int \frac {1}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx-a^2 (2 A+B) \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}dx}{a^2}-\frac {2 (2 A+B) \sin (c+d x) \sqrt {\sec (c+d x)}}{d (\sec (c+d x)+1)}}{6 a^2}\)

\(\Big \downarrow \) 4258

\(\displaystyle \frac {(A-B) \sin (c+d x) \sqrt {\sec (c+d x)}}{3 d (a \sec (c+d x)+a)^2}-\frac {\frac {3 a^2 A \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\cos (c+d x)}dx-a^2 (2 A+B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)}}dx}{a^2}-\frac {2 (2 A+B) \sin (c+d x) \sqrt {\sec (c+d x)}}{d (\sec (c+d x)+1)}}{6 a^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {(A-B) \sin (c+d x) \sqrt {\sec (c+d x)}}{3 d (a \sec (c+d x)+a)^2}-\frac {\frac {3 a^2 A \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx-a^2 (2 A+B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a^2}-\frac {2 (2 A+B) \sin (c+d x) \sqrt {\sec (c+d x)}}{d (\sec (c+d x)+1)}}{6 a^2}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {(A-B) \sin (c+d x) \sqrt {\sec (c+d x)}}{3 d (a \sec (c+d x)+a)^2}-\frac {\frac {\frac {6 a^2 A \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}-a^2 (2 A+B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a^2}-\frac {2 (2 A+B) \sin (c+d x) \sqrt {\sec (c+d x)}}{d (\sec (c+d x)+1)}}{6 a^2}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {(A-B) \sin (c+d x) \sqrt {\sec (c+d x)}}{3 d (a \sec (c+d x)+a)^2}-\frac {\frac {\frac {6 a^2 A \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}-\frac {2 a^2 (2 A+B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}}{a^2}-\frac {2 (2 A+B) \sin (c+d x) \sqrt {\sec (c+d x)}}{d (\sec (c+d x)+1)}}{6 a^2}\)

input
Int[(Sqrt[Sec[c + d*x]]*(A + B*Sec[c + d*x]))/(a + a*Sec[c + d*x])^2,x]
 
output
((A - B)*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(3*d*(a + a*Sec[c + d*x])^2) - ( 
((6*a^2*A*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]]) 
/d - (2*a^2*(2*A + B)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Se 
c[c + d*x]])/d)/a^2 - (2*(2*A + B)*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(d*(1 
+ Sec[c + d*x])))/(6*a^2)
 

3.3.12.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 4258
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x] 
)^n*Sin[c + d*x]^n   Int[1/Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && 
 EqQ[n^2, 1/4]
 

rule 4274
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
(a_)), x_Symbol] :> Simp[a   Int[(d*Csc[e + f*x])^n, x], x] + Simp[b/d   In 
t[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]
 

rule 4507
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[d*(A*b 
- a*B)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^(n - 1)/(a*f*( 
2*m + 1))), x] - Simp[1/(a*b*(2*m + 1))   Int[(a + b*Csc[e + f*x])^(m + 1)* 
(d*Csc[e + f*x])^(n - 1)*Simp[A*(a*d*(n - 1)) - B*(b*d*(n - 1)) - d*(a*B*(m 
 - n + 1) + A*b*(m + n))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, 
A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)] && G 
tQ[n, 0]
 

rule 4508
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[(-(A*b 
- a*B))*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(b*f*(2*m + 
 1))), x] - Simp[1/(a^2*(2*m + 1))   Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Cs 
c[e + f*x])^n*Simp[b*B*n - a*A*(2*m + n + 1) + (A*b - a*B)*(m + n + 1)*Csc[ 
e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] && NeQ[A*b - a*B 
, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)] &&  !GtQ[n, 0]
 
3.3.12.4 Maple [A] (verified)

Time = 8.83 (sec) , antiderivative size = 350, normalized size of antiderivative = 2.08

method result size
default \(-\frac {\sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (12 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}+4 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+6 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+2 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-20 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+2 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+9 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-3 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-A +B \right )}{6 a^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(350\)

input
int((A+B*sec(d*x+c))*sec(d*x+c)^(1/2)/(a+a*sec(d*x+c))^2,x,method=_RETURNV 
ERBOSE)
 
output
-1/6*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(12*A*cos(1/2 
*d*x+1/2*c)^6+4*A*cos(1/2*d*x+1/2*c)^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*co 
s(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+6*A*cos( 
1/2*d*x+1/2*c)^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^ 
(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))+2*B*cos(1/2*d*x+1/2*c)^3*(sin( 
1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticF(cos(1/ 
2*d*x+1/2*c),2^(1/2))-20*A*cos(1/2*d*x+1/2*c)^4+2*B*cos(1/2*d*x+1/2*c)^4+9 
*A*cos(1/2*d*x+1/2*c)^2-3*B*cos(1/2*d*x+1/2*c)^2-A+B)/a^2/cos(1/2*d*x+1/2* 
c)^3/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2* 
c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d
 
3.3.12.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.10 (sec) , antiderivative size = 324, normalized size of antiderivative = 1.93 \[ \int \frac {\sqrt {\sec (c+d x)} (A+B \sec (c+d x))}{(a+a \sec (c+d x))^2} \, dx=\frac {{\left (\sqrt {2} {\left (-2 i \, A - i \, B\right )} \cos \left (d x + c\right )^{2} - 2 \, \sqrt {2} {\left (2 i \, A + i \, B\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (-2 i \, A - i \, B\right )}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + {\left (\sqrt {2} {\left (2 i \, A + i \, B\right )} \cos \left (d x + c\right )^{2} - 2 \, \sqrt {2} {\left (-2 i \, A - i \, B\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (2 i \, A + i \, B\right )}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 3 \, {\left (i \, \sqrt {2} A \cos \left (d x + c\right )^{2} + 2 i \, \sqrt {2} A \cos \left (d x + c\right ) + i \, \sqrt {2} A\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 3 \, {\left (-i \, \sqrt {2} A \cos \left (d x + c\right )^{2} - 2 i \, \sqrt {2} A \cos \left (d x + c\right ) - i \, \sqrt {2} A\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + \frac {2 \, {\left (3 \, A \cos \left (d x + c\right )^{2} + {\left (2 \, A + B\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{6 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}} \]

input
integrate((A+B*sec(d*x+c))*sec(d*x+c)^(1/2)/(a+a*sec(d*x+c))^2,x, algorith 
m="fricas")
 
output
1/6*((sqrt(2)*(-2*I*A - I*B)*cos(d*x + c)^2 - 2*sqrt(2)*(2*I*A + I*B)*cos( 
d*x + c) + sqrt(2)*(-2*I*A - I*B))*weierstrassPInverse(-4, 0, cos(d*x + c) 
 + I*sin(d*x + c)) + (sqrt(2)*(2*I*A + I*B)*cos(d*x + c)^2 - 2*sqrt(2)*(-2 
*I*A - I*B)*cos(d*x + c) + sqrt(2)*(2*I*A + I*B))*weierstrassPInverse(-4, 
0, cos(d*x + c) - I*sin(d*x + c)) - 3*(I*sqrt(2)*A*cos(d*x + c)^2 + 2*I*sq 
rt(2)*A*cos(d*x + c) + I*sqrt(2)*A)*weierstrassZeta(-4, 0, weierstrassPInv 
erse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) - 3*(-I*sqrt(2)*A*cos(d*x + c) 
^2 - 2*I*sqrt(2)*A*cos(d*x + c) - I*sqrt(2)*A)*weierstrassZeta(-4, 0, weie 
rstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) + 2*(3*A*cos(d*x + 
c)^2 + (2*A + B)*cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/(a^2*d*cos 
(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2*d)
 
3.3.12.6 Sympy [F]

\[ \int \frac {\sqrt {\sec (c+d x)} (A+B \sec (c+d x))}{(a+a \sec (c+d x))^2} \, dx=\frac {\int \frac {A \sqrt {\sec {\left (c + d x \right )}}}{\sec ^{2}{\left (c + d x \right )} + 2 \sec {\left (c + d x \right )} + 1}\, dx + \int \frac {B \sec ^{\frac {3}{2}}{\left (c + d x \right )}}{\sec ^{2}{\left (c + d x \right )} + 2 \sec {\left (c + d x \right )} + 1}\, dx}{a^{2}} \]

input
integrate((A+B*sec(d*x+c))*sec(d*x+c)**(1/2)/(a+a*sec(d*x+c))**2,x)
 
output
(Integral(A*sqrt(sec(c + d*x))/(sec(c + d*x)**2 + 2*sec(c + d*x) + 1), x) 
+ Integral(B*sec(c + d*x)**(3/2)/(sec(c + d*x)**2 + 2*sec(c + d*x) + 1), x 
))/a**2
 
3.3.12.7 Maxima [F]

\[ \int \frac {\sqrt {\sec (c+d x)} (A+B \sec (c+d x))}{(a+a \sec (c+d x))^2} \, dx=\int { \frac {{\left (B \sec \left (d x + c\right ) + A\right )} \sqrt {\sec \left (d x + c\right )}}{{\left (a \sec \left (d x + c\right ) + a\right )}^{2}} \,d x } \]

input
integrate((A+B*sec(d*x+c))*sec(d*x+c)^(1/2)/(a+a*sec(d*x+c))^2,x, algorith 
m="maxima")
 
output
integrate((B*sec(d*x + c) + A)*sqrt(sec(d*x + c))/(a*sec(d*x + c) + a)^2, 
x)
 
3.3.12.8 Giac [F]

\[ \int \frac {\sqrt {\sec (c+d x)} (A+B \sec (c+d x))}{(a+a \sec (c+d x))^2} \, dx=\int { \frac {{\left (B \sec \left (d x + c\right ) + A\right )} \sqrt {\sec \left (d x + c\right )}}{{\left (a \sec \left (d x + c\right ) + a\right )}^{2}} \,d x } \]

input
integrate((A+B*sec(d*x+c))*sec(d*x+c)^(1/2)/(a+a*sec(d*x+c))^2,x, algorith 
m="giac")
 
output
integrate((B*sec(d*x + c) + A)*sqrt(sec(d*x + c))/(a*sec(d*x + c) + a)^2, 
x)
 
3.3.12.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {\sec (c+d x)} (A+B \sec (c+d x))}{(a+a \sec (c+d x))^2} \, dx=\int \frac {\left (A+\frac {B}{\cos \left (c+d\,x\right )}\right )\,\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}}{{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^2} \,d x \]

input
int(((A + B/cos(c + d*x))*(1/cos(c + d*x))^(1/2))/(a + a/cos(c + d*x))^2,x 
)
 
output
int(((A + B/cos(c + d*x))*(1/cos(c + d*x))^(1/2))/(a + a/cos(c + d*x))^2, 
x)